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og.ana can be recognized using any of our sensory modalities. For in-
stance, a bumblebee can be recognized by seeing its characteristic yellow and
black colors, by hearing its distinctive buzzing sound, by feeling the fuzzy sur-
face of its body as it walks across our hand, by experiencing the pain as it stings
our finger, or by any combination of these cues. But, it is only by using vision
and touch that the complex three-dimensional (3-D) geometric properties of
particular objects can be recognized. Of these two senses, vision is the one we
use most often to identify objects—although the tactile system (or haptics) is
also useful, particularly in situations where the objects cannot be seen.
Haptics can also provide information about the weight, compliance, and tem-
perature of an object—as well as information about its surface features, such
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as how sticky or slippery it is—information that is not readily
merely looking at the object. But, by the same token, vision can provide inlvi

mation about an object’s color and surface patterns—features that cannat by

detected by haptics. Moreover, even though both haptics and vision provide
information about an object’s volumetric shape, there are clear differences i
the way in which that information is garnered by the two systems. The hapii
system can operate only on objects that are located within personal spi v,
that is, on objects that are within arm's reach. The visual system, however, cin
analyze not only objects that reside within personal space but also those tha
are at some distance from the observer. Of course, when objects are at » (i
tance, only the surfaces and parts of an object that face the observer cun he
processed visually (although it is possible, in some cases, for the observer 1
walk around the object and take in information from multiple viewpoinis).
When objects are within reach, however, they can be manipulated, thus re-
vealing the structure and features of the previously unseen surfaces and puaris
to both the visual and the haptic system.
The receptor surfaces of both systems have regions of low and high acuity.
For vision, the high-acuity region of the retina is the fovea; for haptics, the
high-acuity regions are the fingers, lips, and tongue. Although both systems are
able to bring these high-acuity surfaces to bear on an object, vision has a de-
cided speed advantage. After all, a saccadic eye movement can be planned and
executed in under 200 ms, whereas moving the fingers to a new location of an
object takes much longer. But even though the visual system is much more effi-
cient in this regard, both systems perform their high-acuity analysis of an object
in a serial fashion. The visual system, however, is capable of carrying out a
coarse-grain analysis using the peripheral retina simultaneous with the
fine-grained analysis carried out with the fovea. In contrast, except for ex-
tremely small objects, it is difficult for the haptic system to carry out a
coarse-grained analysis using the palms (or even enclosure by the arms) simul-
taneous with a fine-grained analysis with the fingers.
Despite these differences between the two systems, the fact remains that vi-
sion and haptics are the only two sensory systems that are capable of processing
the geometrical structure of objects. It is perhaps not surprising, therefore, that
higher order processing of objects by the two systems appears to deal with their
respective inputs in much the same way. For example, in many situations, par-
ticularly those in which differential information about surface features such as
color and visual texture are not available, visual recognition of objects is view-
point dependent. In other words, if an object is explored visually from a particu-
lar viewing angle, recognition will be better for that view of the object than for
other views (Harman & Humphrey, 1999; Humphrey & Khan, 1992; Tarr,
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fact, if the transfer were that complete and transparent, then in many ways (e
second explanation reduces to the first—and the only difference is how distrils
uted are the two representations. A third possibility, of course, is that 1he
cross-modal priming and the within-modality priming are both mediated by
verbal or semantic processing’of the object. In other words, the two madul

ity-specific representations are re-activated by feedback from verbal processii
systems. The fact, however, that babies as young as 2 months of age, as well i
chimpanzees (Streri, 1993), show evidence of transfer in cross-modl
(visual-to-haptic) matching tasks, suggests that interactions between the
systems are not mediated by only verbal representations.

As was mentioned earlier, there is evidence that if only one view of an oh.
ject is studied, then during later testing the object will be recognized more
quickly if that view rather than another is presented—and this is true in borh
the visual as well as the haptic domain. What is interesting is that this view-
point-specificity is also true for cross-modal presentations. In other words, an
object studied haptically from one particular “viewpoint” will be better recog-
nized in a visual presentation if the same rather than a different view of the oh-
ject is presented (Newell et al., 2001). Like the cross-modal priming results
described earlier, this finding also suggests that vision and haptics share a
common object representation. Moreover, the viewpoint-specificity of the
cross-modal transfer lends support to the argument that this shared represen-
tation encodes the 3-D structure of the object rather than a more abstract
conceptual or verbal description of the object.

In short, there is reasonably good behavioral evidence to suggest that vision
and haptics encode the structure of objects in the same way—and use a com-
mon underlying representation. This conclusion finds additional support in a
number of neuroimaging studies that have demonstrated overlap between vi-
sual and haptic processing within the human brain, This overlap appears to oc-
curin regions of the brain that are usually considered visual, such as extrastriate
areas in the occipital cortex. Several investigators (Amedi, Jacobson, Hendler,
Malach, & Zohary, 2002; Amedi, Malach, Hendler, Peled, & Zohary, 2001;
Deibert, Kraut, Kremen, & Hart, 1999) have found that haptic object identifi-
cation tasks show activation in visual areas when measured using functional
magnetic resonance imaging (MRI). In other words, compared to a control
task, identifying objects haptically produced greater activation in the
extrastriate cortex (in addition to other regions). The involvement of visual ar-
eas in haptic processing has also been demonstrated using transcranial mag-
netic simulation (TMS), a technique in which a brief magnetic pulse is applied
to the brain to disrupt the processing occurring in a localized region of the cor-
tex. This is sometimes referred to as a “transient lesion,” because processing is
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the idea that a common area within the extrastriate cortex (LOC) can be driven
both by visual and by haptic information about an object's structure. Second, it
shows that the LOC is probably bimodal not multimodal in nature, because i

ditory cues associated with a particular object did not produce activation there,
And finally, it shows that the mental image of an object evoked by associntedd
auditory cues was also insufficient to activate the LOC. Taken together, these
findings suggest that the mental (visual) image of an object that might v
evoked during haptic exploration is not responsible for the activation observed
in LOC—unless one assumes that visual images invoked by tactile cues are dil-
ferent from the visual images invoked by auditory cues, or the visual images in-
voked by deliberate imagination. For instance, the visual imagery induced by an
auditory cue may not be as detailed or specific as that induced by tactile explora-
tion—and may be more difficult to sustain. Nevertheless, even indistinct visual
imagery would be expected to produce activation in the LOC. Furthermore, if
one postulates that a special kind of visual image is invoked by haptic cues, then
this is tantamount to suggesting that haptics and vision enjoy a special
relationship (perhaps a bimodal representation) that is independent of any
overarching visual image that might be generated by other means.

The behavioral and neuroimaging evidence we have described so far sug-
gests that haptics and vision share a common bimodal representation of ob-
jects. To explore this hypothesis further, in a recent study (T. W. James et al,,
2002), we combined the cross-modal priming method used in previous behay-
ioral studies with high-field fMRI. As we have seen, priming paradigms are a
good tool for investigating the nature of object representations (Reales &
Ballesteros, 1999), because they involve the use of an implicit task, in which
carlier exposure to an object can affect (or not affect) current processing of
the same object. Any observed effect of the priming manipulation must be at-
tributed to residual activation of the object representation or to some form of
permanent change to that representation.

Because we wanted to look directly at cross-modal priming of the geometric
structure of objects, we used a set of 3-D novel objects that were made out of
clay and spray-painted white (Fig. 7.1). By using objects that were both novel
and meaningless, we hoped to limit the use of semantic or verbal encoding. Im-
portantly, we also used a passive viewing paradigm, in which subjects were sim-
ply required to look at the objects and to do nothing else. They did not have to
identify, name, or explicitly recall the objects in any way. It was expected that
this “task” would ensure the implicit activation of the object representation on
subsequent presentations with as little “explicit contamination” as possible.

We hypothesized that any common region for haptic and visual object pro-
cessing that we identified would show an equivalent priming effect whether the
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FIG. 7.2, Bimulul fat

brain image is a rendered rep-
resentation of the grey-matter
surface of the right hemi-
sphere. The white region indi-
cates the location of the LOC.
The LOC is equally activated,
bilaterally, by visual and haptic
exploration of objects and
shows equivalent priming ef-
fects whether prior exposure
was visual or haptic.

tween visual and haptic exploration (T. W. James et al., 2002). This region
corresponds to the lateral occipital complex (LOC), a region that has been im-
plicated in the selective processing of visual objects (Kanwisher, Chun,
McDermott, & Ledden, 1996; Malach et al., 1995) and often shows evidence of
visual priming in imaging studies (for review, see Cabeza & Nyberg, 2000;
Schacter & Buckner, 1998; Wiggs & Martin, 1998). Thus, it was not surprising
‘hat the LOC was activated by visual exploration of objects or showed signifi-
:ant visual-to-visual priming effects. More recently, the function of the LOC
1as been reinterpreted as bimodal (Amedi et al., 2002; Amedi et al., 2001).
Thus, it was not too surprising that the LOC showed significant haptic-to-vi-
wal priming as well. The interesting point to be made, however, is that the ef-

ect of haptic priming in the LOC was equivalent to that of visual priming. This

:an be seen in the activation time courses shown in Fig. 7.3. Visually and

raptically studied objects each produced more activation than nonstudied ob-

ects, but importantly the time courses for the activation produced with visually

ind haptically studied objects overlapped almost completely. The increase in

ictivation with studied objects that we observed, although inconsistent with

sther priming results using common objects (for review, see Cabeza & Nyberg,

'000; Schacter & Buckner, 1998; Wiggs & Martin, 1998), was consistent with

he results from at least two other priming studies that used novel objects

Henson, Shallice, & Dolan, 2000; Schacter et al., 1995).

Our priming experiment (T. W. James et al., 2002), together with results of
revious studies (Amedi et al., 2002; Amedi et al., 2001), provides converging
vidence that visual imagery does not mediate the haptically produced activa-
ion in the LOC. In previous studies, no visual stimulus was present during
aptic exploration conditions, and this lack of a visual stimulus should promote
he use of visual imagery. Recall that during scanning in our study, participants
rere always viewing a visual stimulus. What varied from trial to trial was
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sual input, It is possible that the visual imagery clicited by haptic exploration of

objects during the study phase of the experiment could unfold in the same way,
that is, by activating an abstract representation, which in turn activates a per-
ceptual representation. But it is also possible that haptic exploration could di-
rectly activate the perceptual object representation, without activating an
abstract representation. As we saw earlier, young infants and chimpanzees
(Streri, 1993), who presumably have a limited capacity for abstract or symbolic
representation, show efficient transfer of training between haptics and vision,
suggesting that abstract representations are not necessary for cross-modal
transfer. In addition, our study was designed to limit abstract encoding of the
objects (by using meaningless novel objects). Furthermore, patient DE, who is
described in further detail a bit further on, has preserved visual imagery, despite
severe damage to the “normal” feedforward visual processing regions, suggest-
ing that activation of these regions, and thus activation of geometric object rep-
resentations, is not necessary for visual imagery. Finally, the fact that we found
equivalent effects of visual and haptic priming on activation in visual areas such
as the LOC suggests that no extra computational step, such as utilizing an ab-
stract representation, was implemented. These findings, combined with the re-
sults of experiments using auditory-cued mental imagery (Amedi et al., 2002;
Amedi et al,, 2001), provide strong converging evidence that occipital cortex
activity during haptic exploration of objects is not produced because of an en-
dogenous cue to visually imagine the object, but instead is produced by direct
haptic input to bimodal object representations in the LOC. Activation of the
LOC may in turn produce activity in other occipital regions that are involved in
the production of visual images, but these activations would likely be much
more unspecified than those produced by direct haptic input, causing a much
smaller priming effect. This is in fact what happens with cross-modal audi-
tory-to-visual priming: priming effects are smaller across modalities than within
modalities (e.g., see Greene, Easton, & LaShell, 2001). This is presumably
because interactions between vision and audition can only occur if the
incoming information is first transformed into a sufficiently abstract
representation—a requirement made necessary because vision and audition do
10t share a common representation at a lower level of processing such as
Jeometric structure.

Although there was no behavioral data collected in our experiment, the fact
hat levels of activation were the same for both kinds of priming is consistent
¥ith the results of earlier behavioral experiments (Easton, Greene, & Srinivas,
1997; Easton, Srinivas, & Greene, 1997; Reales & Ballesteros, 1999). In these
itudies, cross-modal priming effects between haptics and vision were of the
'ame magnitude as the within-modal priming effects observed with either vi-
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sion or haptics, even with novel objects. In both neural activation »..a behavior,
then, cross-modal priming is no less “efficient” in its effect than within-modal
priming. Taken together, these findings suggest that no extra computational
step is required to prime visual processing of object shape usinga 3@8%:8&0:
based on previous haptic input than is required to prime visual processing of ob-
ject shape using a representation based on previous visual input. Indeed, in_
would argue that cross-modal priming makes use of a common r»van. and visua
representation. One candidate region for the neural substrate om &s common
representation is the LOC, which not only showed equivalent i_nﬁ_?—:&mra
and across-modality priming, but was also equally activated by haptic and visual
exploration of objects in our study and in other studies (Amedi et w_.. 2002;
Amedi et al., 2001). The common representation, we would argue, is not se-
mantic or verbal in nature. In our priming study, we used novel oEona. ms.onomn_
of common objects to minimize the chances of semantic or verbal mediation of
any priming effects that were observed. The fact that priming effects were found
with these novel objects that are difficult to label verbally suggests that
cross-modal priming can occur “below” the level of semantic or <2.v.s_ repre-
sentations of objects. Thus, one might speculate that the common <=.=m_ and
haptic representation of objects occurs first at the level of shape processing, and
not at a more abstract or associative level, such as semantic or lexical
processing. .

Evidence from neuropsychological studies of patients with visual agnosia
also supports the idea that haptic and visual signals may converge at the _n<n_. of
geometric representations of objects. In a recent report, a patient with
prosopagnosia, who could not recognize faces visually, was also found to have
difficulty learning to recognize faces using the sense of touch (Kilgour, de
Gelder, & Lederman, 2004). Further evidence for haptic and visual conver-
gence comes from investigations in our own lab of a patient (DF) with visual
form agnosia (for original report, see Milner et al., 1991). DF is able to :..nomau.n
objects using information from surface properties like color m:.m texture, but is
unable to recognize objects based on contour or form information (Humphrey,
Goodale, Jakobson, & Servos, 1994). Inshort, she is unable to generate geomet-
ric structural representations of objects (Milner & Goodale, 1995).
Neuroimaging shows that DF has bilateral lesions in area r0.0 (T. W. _wa.nm_
Culham, Humphrey, Milner, & Goodale, 2003), in the same region of the occip-
ital cortex that we have shown to underlie bimodal geometric structural repre-
sentations of objects (T. W. James et al., 2002). This would suggest ﬂr»n.Um
should not only have difficulty recognizing the shape of an object from vision,
but should also have difficulty recognizing the shape of an object from her sense
of touch. Preliminary findings from our laboratory indicate that this is the case.




When given a eactile recognition memory test using objects like
inFig. 7.1, DF was able to recognize only 7
above chance level, and is significantly worse than that of an age-matched ¢ i

trol. But more importantly, when DF was tested with similar objects in a visuul
‘ecognition test, she actually performed slightly better, recognizing 8 of the |2

sbjects (67%). Given DF’s pronounced deficit in recognizing objects visually,

ne might have expected her to do better with tactile information,
We explored DF’s haptic object recognition skills further, using a paired-,1-

ich letter names were paired with a new set of novel objects
haptically. As can be seen in Fig. 7.4 (right axis), a healthy
ontrol participant was able to learn the letter names A through L for 12 dif.
>rent objects within three blocks of trials. DF wag unable to perform this task,
1anaging only one correct response out of twelve after four blocks of trials.
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however, must be processed by the LOC, which is why DI has grear difficulty
recognizing the form of objects, even when they are familiar. Taken together, the
results from DF (and the prosopagnosia patient discussed earlier) suggest that
lesions of visual areas in the occipitotemporal cortex that disrupt the visual rec-
ognition of object form can also interfere with haptic recognition of objects.
The deficit appears to be most apparent when encoding the structure of objects
that have not been encountered before.

It is important to note that although we have shown here that vision and
haptics are intimately interrelated when it comes to representing the geometric
structure of objects, there can also be no doubt that haptics and vision are inte-
grated even more seamlessly when providing feedback for the successful execu-
tion of visuomotor commands. For instance, during movements of the arm and
hand, a proprioceptive representation of the hand’s position in space is auto-
matically and effortlessly referenced to the visual calculation of the hand's posi-
tion. Whether these calculations are carried out in isolation, or whether they
share computational and neural overlap are questions that are beginning to be
addressed. For instance, activation in regions of the parietal and occipital cor-
tex are known to be influenced by the position of the eye (DeSouza et al., 2000;
DeSouza, Dukelow, & Vilis, 2002). Haptics and vision also appear to be inte-
grated during the processing of motion (Hagen et al., 2002) and it is likely that
this is due to a direct somatosensory input into the middle temporal motion
complex (Blake, Sobel, & James, 2004), an area specialized for the processing of
object motion and optic flow. In addition, there is a growing body of evidence
suggesting that vision, haptics, and also audition can all be influenced by each
other during the allocation of attention to specific regions of space (Butter,
Buchtel, & Santucci, 1989; Macaluso, Frith, & Driver, 2000, 2002; Maravita,
Spence, Kennett, & Driver, 2002).

In most studies of haptic or visual object recognition, the objects are fixed
and are studied with a single sensory modality; this is not the way that we nor-
mally interact with objects when we are trying to recognize or encode them. In-
teractions between vision and proprioception, between visual and tactile
motion perception, and between visual and tactile allocation of attention,
would all be involved in the active exploration of an object that is held and ma-
nipulated in our hands. In fact, for optimum representation of the geometric
structure of an object it may be necessary to exploit all of these visuohaptic and
visuomotor interactions (Harman, Humphrey, & Goodale, 1999; K. H. James
et al., 2002). More regions in the brain may be multisensory than was previously
thought and consequently, demonstrating that area LOC is bimodal may be
only the first step toward realizing the bimodal nature of much of what up to
now has been regarded as exclusively “visual” cortex.
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