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Abstract: Recent exposure to a stimulus improves performance with subsequent identification of that
same stimulus. This ubiquitous, yet simple, memory phenomenon is termed priming and has been linked
to another widespread phenomenon called repetition suppression, which is a repetition-induced reduc-
tion in human brain activation as measured using fMRI. Here, competing models of the neural basis of
repetition suppression were tested empirically. In a backward masking paradigm, we found that effec-
tively masked object stimuli showed repetition enhancement of brain activation instead of suppression.
This finding is consistent with an Accumulation model, but is inconsistent with a Suppression model of
neural activity. Enhanced activation and the improved behavioral performance usually associated with
priming are both explained by a shift in peak latency of the population neural activity elicited during
identification. Hum Brain Mapp 27:37–46, 2006. © 2005 Wiley-Liss, Inc.
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INTRODUCTION

Recent visual exposure to an object stimulus causes
changes in both behavioral response measures and in mea-
sures of brain activity when that stimulus is subsequently
presented. Effects on behavior are generally called priming
and usually improve response time and/or accuracy on a
variety of implicit tasks, such as naming. The effect is largest
when the repeated stimulus is an exact copy of the initial
object, which is then termed repetition priming [for review,
see Roediger and McDermot, 1993; Schacter et al., 1993].

Human neuroimaging studies as early at 1992 measured
changes in brain activation associated with repeated presen-
tation of stimuli [Squire et al., 1992]. That study, and a
majority of subsequent neuroimaging studies found that
objects or words stimulated less blood oxygen level-depen-
dent (BOLD) brain activation after repeated exposure than
upon initial exposure [for review, see Cabeza and Nyberg,
2000; Schacter and Buckner, 1998; Wiggs and Martin, 1998].
This effect has come to be called repetition suppression
[Henson, 2003], reflecting its predictable, experience-driven
decrease in brain activation. Brain regions that show repeti-
tion suppression differ between experiments, but in general
the regions that show suppression are those that are in-
volved in processing the stimulus in question. For instance,
object-selective cortex in the occipito-temporal region is sup-
pressed with repeated exposure to object stimuli. Several
researchers suggest that repetition suppression and priming
are associated [Buckner et al., 1998a; Henson et al., 2004;
James et al., 2000; Schacter and Buckner, 1998; Ungerleider,
1995; Wiggs and Martin, 1998], but the exact relationship
between priming effects and repetition suppression effects
remains controversial [Grill-Spector and Malach, 2001; Hen-
son, 2003].
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Single-neuron recordings in the inferior temporal lobe (IT)
of nonhuman primates also provide information about
changes in brain activity related to experience. Although
there are fewer data than with human neuroimaging, some
evidence suggests that object stimuli produce less activity
after repeated exposures than upon initial exposure [Li et al.,
1993; Miller et al., 1991]. This effect is also called repetition
suppression [Desimone, 1996] or sometimes response sup-
pression [Brown and Xiang, 1998; Henson, 2003]. In the
absence of more direct data, the pattern of response after
repetition in neurons in human IT can be inferred on the
basis of this animal work, and suggests that a subset of
neurons in IT decrease their activity with repeated exposure
to objects.

The experimental conditions under which response sup-
pression in single-units and repetition suppression in neu-
roimaging is found are quite different, although the phe-
nomena are similar. Both record a decrease in activation
related to repeated exposure to a visual stimulus. Several
researchers, therefore, have proposed models of BOLD rep-
etition suppression that are based on single-unit response
suppression [Desimone, 1996; Grill-Spector and Malach,
2001; Wiggs and Martin, 1998]. Furthermore, one of these
models has been extended to describe the interrelation of
repetition suppression, response suppression, and priming
[Wiggs and Martin, 1998]. Thus, converging evidence from
priming experiments, single-unit recordings, and human
neuroimaging has spawned a model of object repetition that
links behavioral facilitation (priming) with a general sup-
pressive neural effect in object-selective regions of the cortex
that manifests in both single-unit and population measures
in human and nonhuman primates [Wiggs and Martin,
1998]. We will call this the Suppression model. Specifically,
objects are represented by a subset of neurons in IT that code
the diagnostic and nondiagnostic features of the object. Re-
peated exposures cause suppression of activity in neurons
coding nondiagnostic features, while the diagnostic neurons
continue their strong activity. Eventually, repeated exposure
causes the nonessential cells to drop out. As nondiagnostic
neurons drop out of the representation, the representation is
sharpened or tuned, because the cells that continue to re-
spond are the ones that code the most relevant features for
identification. Looking at IT as a population of neurons, the
net effect of tuning would be reduced activity; therefore,
neuroimaging signals would be suppressed (Fig. 1). Sharp-
ening would also make the object representation more effi-
cient, which would explain the behavioral facilitation of
priming.

The general acceptance of the homology between repeti-
tion priming, human repetition suppression in neuroimag-
ing, and single-unit response suppression in monkeys ap-
pears to ignore several important findings that depart from
the typical pattern of results [Dolan et al., 1997; George et al.,
1999; Grill-Spector et al., 2000; Henson et al., 2000; James et
al., 2002b; Malach et al., 1995; Schacter et al., 1995]. These
idiosyncratic experiments all describe results in which re-
peated exposure to an object caused an increase in activation,

not the typical decrease in activation. The studies are of two
types, those that used non-nameable stimuli such as novel
objects [Henson et al., 2000; James et al., 2002b; Schacter et
al., 1995], and those that used degraded stimuli that were
initially difficult to name [Dolan et al., 1997; George et al.,
1999; Grill-Spector et al., 1999; Malach et al., 1995]. In the
experiments with degraded stimuli, it is likely that the in-
crease in fMRI signal was related to an increase in recogni-
tion accuracy. More recent experiments [Ress and Heeger,
2003] have determined that successful discrimination of a
stimulus stimulates more activity in visual cortex than un-
successful discrimination. Therefore, if the probability of
successful identification is greater for primed objects than
for nonprimed objects, the average activation across a group
of primed objects will be greater. When identification is
constant across priming conditions, such as when perfor-
mance is at a ceiling, the common decrease in activation
prevails.

The second set of experiments is more diverse and the
reasons for their atypical repetition effects are less clear.
These experiments all used novel objects or nonfamous faces
as stimuli [Henson et al., 2000; James et al., 2002b; Schacter
et al., 1995]. One of the experiments [Henson et al., 2000]
used famous faces as well as nonfamous faces. The famous
faces in that study produced the typical suppressive repeti-
tion effect while novel faces led to an enhancement follow-
ing repetition. Therefore, because suppression and enhance-
ment were found in the same study where stimulus and
scanning parameters were equated, this rules out an account
based on methodological differences. It is tempting to spec-
ulate that the novelty of the objects could account for the
enhancement effects. There are, however, at least three re-
ports of typical suppressive repetition effects with novel
objects [James et al., 2002a; van Turennout et al., 2000; Vuil-
leumier et al., 2002]. Nevertheless, examination of the spe-

Figure 1.
Suppression model. The right graph illustrates a simulated neural
response to a single repeated (gray) and nonrepeated (black),
nondegraded stimulus. The left graph illustrates a simulated BOLD
response to those same stimuli. Note that the neural activity and
BOLD response graphs use different time scales. The primed
neural activity is suppressed and produces a smaller BOLD re-
sponse.
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cific types of stimuli used in different studies reveals differ-
ences in the homogeneity of the object sets, suggesting that
novelty may contribute to the atypical effects, but only when
combined with a high degree of perceptual similarity. Ex-
periments that used perceptually diverse novel stimuli
showed the typical suppressive repetition effect [James et al.,
2002a; van Turennout et al., 2000; Vuilleumier et al., 2002],
whereas experiments that used perceptually similar novel
stimuli showed an atypical repetition enhancement effect
[Henson et al., 2000; James et al., 2002b; Schacter et al., 1995].

Regardless of the explanation, it is clear that the Suppres-
sion model has difficulty accounting for the atypical results,
in addition to several other unresolved problems [for re-
view, see Henson, 2003]. What is needed is another model of
the relationship between priming that facilitates behavioral
response measures, and repetition suppression, which de-
creases hemodynamic response as measured using neuro-
imaging. Here, we propose an Accumulation model to ac-
count for the relationship between priming and repetition
suppression. Accumulation models are derived from models
of reaction time data [Luce, 1986] and are well suited for
describing both behavioral response measures [Nosofsky
and Palmeri, 1997] and neural activity [Gold and Shadlen,
2001; Perrett et al., 1998; Schall, 2003]. To model object
recognition times with an Accumulation model, recognition
is considered a process that accumulates evidence over time
until a critical level of evidence is reached, at which time
recognition is achieved, the process is terminated, and a
response is made. To model neural activity with an Accu-
mulation model, the population of neurons that underlie the
recognition process accumulate activity until a critical level
is reached [Gold and Shadlen, 2001; Hanes and Schall, 1996],
at which time the process is complete and activity returns to
baseline. A neural simulation of word priming [Becker et al.,
1997] showed that repeated presentation of a stimulus
caused a strengthening of the word’s representation, which
in turn caused the network to settle more quickly. Therefore,
priming effects can be modeled as a shift in time of peak
activity, which leads to shorter recognition times. Typically,
the BOLD response is considered proportional to the cumu-
lative underlying neural activity [Boynton et al., 1996; Hen-
son et al., 2002; Rees et al., 2000]. As shown in Figure 2, when
two activity functions have different peak times, but the
same postpeak rate of decay, the function with the earlier
peak has the smaller cumulative activity. The primed activ-
ity function peaks earlier and shows a smaller BOLD re-
sponse. Therefore, an Accumulation model can explain the
relationship between priming effects and repetition suppres-
sion.

But can Accumulation account for the atypical results
reported above? Accumulation would predict that repeated
objects in these experiments would have longer peak times
and that the behavioral priming effect would be in the
wrong direction. That is, repetition enhancement should
accompany a performance deficit. Unfortunately, the exper-
iments in question did not acquire behavioral performance
measures that are useable in this type of analysis. However,

unpublished data from our laboratory support this hypoth-
esis. Using a gradual presentation technique reported pre-
viously [James et al., 2000], we measured BOLD time courses
to primed and nonprimed novel objects. Identification times
were faster for nonprimed objects, which also had a faster
rise to peak activation. The Accumulation model, therefore,
has the potential to explain a wider range of results than the
Suppression model.

The Accumulation model suggests that differences be-
tween primed and nonprimed activation are due to differ-
ences in the temporal dynamics of the underlying neural
activity. At least three studies [Henson et al., 2002; James et
al., 1999, 2000] have used functional MRI (fMRI) to explore
the temporal dynamics of visual object priming in humans.
All of these studies found that priming shortened the time to
reach peak BOLD and hypothesized that this reflected a
similar pattern in the underlying neural activity: that prim-
ing enhanced the rate of accumulation of neural activity
following stimulus onset. But fMRI is not the best neuroim-
aging technique for resolving the timing of neural events.
The temporal resolution of magnetoencephalography
(MEG) is much greater than that of fMRI. There are at least
two MEG studies [Dale et al., 2000; Noguchi et al., 2004] that
explored the temporal dynamics of visual object priming.
One of these studies [Dale et al., 2000] found that nonprimed
objects produced more activity than primed objects after 385
ms poststimulus onset. This effect is similar to the late
positive effect reported in many event-related potential
(ERP) studies of priming [for review, see Rugg, 1995]. The
MEG study, however, did not investigate the possibility that
primed objects could produce more activity than nonprimed
objects at some other point in the time course. Examination
of the raw images suggests that earlier than 185 ms primed
objects produced more activity than nonprimed objects in
posterior cortex. This supposition is supported by another
more recent MEG study [Noguchi et al., 2004]. In that study,

Figure 2.
Accumulation model. The right graph illustrates a simulated neural
response to a single repeated (gray) and nonrepeated (black),
nondegraded stimulus. The left graph illustrates a simulated BOLD
response to those same stimuli. Note that the neural activity and
BOLD response graphs use different time scales. The primed
neural activity is shifted leftward in time and produces a smaller
BOLD response.
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activity for primed objects peaked earlier than for non-
primed objects and activity for nonprimed objects persisted
longer than for primed objects. In other words, primed
objects initially produced more activity, but were eventually
overtaken by the nonprimed objects once the primed object
activity reached its peak. Of interest was the finding that the
primed peak was also reduced in magnitude compared to
the nonprimed peak, suggesting that repetition suppression
may reflect a combination of Accumulation and Suppression
models. This idea is further explored below and in the
Discussion section.

Single-unit recordings also have high temporal resolution
compared to fMRI. The neurophysiological studies reported
above [Li et al., 1993; Miller et al., 1991] found suppression
of single-unit activity upon repeated exposure to an object
stimulus, with little evidence for accumulation. Several
other neurophysiological studies, however, have found the
opposite result [for example, see Bichot and Schall, 1999,
2002], suggesting that response suppression is not ubiqui-
tous and that repetition effects in single-units may be sensi-
tive to the contexts and demands of different experimental
procedures.

In summary, the Suppression and Accumulation models
both relate priming effects to repetition suppression and
both models are supported by neurophysiological evidence.
There is growing evidence that Accumulation may account
for more priming phenomena than Suppression [Henson
and Rugg, 2003], but to date there has been no empirical test
of the two models using fMRI. Here, we used fMRI in
combination with backward masking to evaluate the contri-
bution of preidentification processes to the BOLD response.
As illustrated in Figures 1 and 2, measuring BOLD re-
sponses with successfully identified objects does not dissoci-
ate the Accumulation and Suppression models. Both models
predict a reduction in BOLD response with repetition. As
Figure 3 demonstrates, however, when the objects are effec-
tively masked and processing is terminated before identifi-
cation occurs, the Accumulation and Suppression models
make opposite predictions. The Suppression model predicts
that effectively masked primed objects will produce less
activation than nonprimed objects, whereas the Accumula-
tion model predicts that effectively masked primed objects
will produce more activation than nonprimed objects.

Three assumptions are necessary for this prediction. The first
assumption is that effective masking implies truncation of neu-
ral activity. Backward masking phenomena are complex and
the effects on neural activity are not completely understood.
Nevertheless, neurophysiological studies find that masked
stimuli produce less activity than unmasked stimuli [Macknik
and Livingstone, 1998; Rolls et al., 1999], suggesting that mask-
ing does truncate neural activity. The second assumption is
that the decay functions for primed and nonprimed objects
must be equivalent for effectively masked stimuli. A previous
MEG study [Noguchi et al., 2004] showed that nonprimed
activation functions are wider than primed functions, suggest-
ing that peak activation may persist for nonprimed objects. The
objects in that study, however, were all successfully recognized

and it is likely that the persistence reflected postrecognition
cognitive operations such as differential deployment of atten-
tion to primed and nonprimed objects. With effectively masked
objects, primed and nonprimed stimuli cannot be distin-
guished because they do not reach awareness. In this case,
primed and nonprimed objects will not be subjected to differ-
ent cognitive operations; therefore, equating their decay func-
tions seems a reasonable assumption. With successfully iden-
tified objects, different cognitive operations performed on
nonprimed and primed objects may cause a shallower decay
slope for nonprimed objects than for primed. The effect of this
shallower nonprimed decay slope, however, would be to ex-
aggerate the effect already predicted by the Accumulation
model. Because our predictions are qualitative, not quantita-
tive, we did not use different decay slopes for nonprimed and
primed successfully identified objects. The third assumption is
that the peak magnitude of the neural activity function for
primed and nonprimed objects is equivalent. The MEG study
described above [Noguchi et al., 2004] suggested that peak
magnitude for primed objects was lower than for nonprimed

Figure 3.
Backward masking predictions. The right graphs illustrate a simu-
lated neural response to a single repeated (gray) and nonrepeated
(black), stimulus embedded in noise and masked. The left graphs
illustrate a simulated BOLD response to those same stimuli. Note
that the neural activity and BOLD response graphs use different
time scales. Termination of activity due to masking produces
opposite results in BOLD response for Accumulation and Sup-
pression models.
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and concluded that a combination of Accumulation and Sup-
pression models accounted best for their results. Although a
quantitative fit of the data may benefit from a combination of
the two models, for our qualitative predictions we wanted to
maximally dissociate the Accumulation and Suppression mod-
els. Therefore, the Accumulation model did not include
changes in peak magnitude and, likewise, the Suppression
model did not include changes in peak latency. In short, our
study is a test of whether the Suppression model alone can
account for repetition suppression in fMRI—ruling this out
would not exclude the possibility that a combination of the two
models may be a better fit for the data than the Accumulation
model alone.

SUBJECTS AND METHODS

Participants

Of the nine participants, six were male and three were
female. They were postdoctoral fellows, research assistants,
graduate students, or undergraduate students attending
Vanderbilt University. None had any reported history of
neurological disorder and all reported normal or corrected-
to-normal vision. The Vanderbilt University institutional re-
view board approved the protocol and all participants
signed informed consent.

Stimuli

Images of 162 familiar objects were selected from Hemera
Photo-Objects images II (Hemera; http://www.hemera.
com). Objects were selected such that no two objects shared
the same common name (e.g., chair). During the LOC local-
izer runs, 81 of the 162 objects were presented as unde-
graded, full contrast images. The remaining 81 objects were
also presented, but were scrambled on a 20 ! 20 grid (Fig. 4).
During the event-related runs, all 162 objects were presented
intact (not scrambled), but they were degraded by reducing
their contrast to either 0.08, 0.18, or 0.40, and by embedding
them in random noise that was normally distributed with a
standard deviation equal to one-eighth of the possible lumi-
nance range (Fig. 5A). When presented in the scanner,
viewed through a set of Visuastim XGA goggles (MRI De-
vices, Waukesha, WI), images subtended 17.6° of visual
angle. The subset of 81 objects that was intact or scrambled
was counterbalanced across participants, which effectively
counterbalanced the primed and nonprimed object sets.

Procedures

Imaging runs were divided into three LOC localizer runs
and six event-related masking runs. For the three LOC lo-
calizer runs, images were presented in a blocked design
paradigm with six 18-s stimulation blocks and seven 9-s rest
blocks per run. Stimuli were full-contrast images of objects,
both intact and scrambled (Fig. 4). In each run there were
three intact and three scrambled blocks, with nine images
per block, each presented for 2 s. During the three runs each
of the 81 intact and 81 scrambled images was presented only

once. Participants passively viewed the objects for the local-
izer runs and were not told that the objects would be seen
again in the following runs.

The six masking runs always followed the localizer runs.
For the masking runs, images were presented in an event-
related design. Half of the objects presented in these six runs
were the 81 intact objects used in the localizer runs (primed)
and half were the 81 scrambled objects (nonprimed). Images
of these objects were presented at three levels of contrast and
were embedded in noise (Fig. 5A). There were 27 trials per
run; each trial consisted of an 800-ms warning cross, 83-ms
stimulus presentation, and 117-ms mask, followed by 8 s of
rest. On each trial, participants attempted to silently name
the object and responded with a four choice confidence
judgment about the name they were able to generate. Their
choices were 1) definitely identified the object; 2) fairly sure
they identified it, but not definite; 3) not sure what it was,
but saw something or could guess; 4) definitely did not
identify it, could not guess, or saw only noise. Choices were
made using a four-button response pad with the four fingers
of the right hand.

Imaging Parameters

All imaging was done using a 3 T, whole-body GE MRI
system and a birdcage head coil located at the Vanderbilt
University Medical Center (Nashville, TN). The field of view
was 24 ! 24 ! 6.3 cm, with an in-plane resolution of 64 ! 64
pixels and 9 contiguous coronal scan planes per volume,

Figure 4.
Lateral occipital complex. Stimuli used in the localizer runs were
high-contrast intact and scrambled images of familiar objects. Brain
images show the extent of the acquired functional data and, within
that area, the location of group LOC averaged across nine ob-
servers (stereotaxic coordinates: x " 39, y " –61, z " 3; x " –39,
y " –64, z " –1). [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]
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resulting in a voxel size of 3.75 ! 3.75 ! 7.0 mm. Images
were collected using a T2*-weighted EPI acquisition (TE
" 25 ms, TR " 1000 ms, flip angle " 70°) for blood oxygen
level-dependent (BOLD)-based imaging. High-resolution
T1-weighted anatomical volumes were also acquired using a
3D fast spoiled grass (FSPGR) acquisition (TI " 400 ms, TE
" 4.18 ms, TR " 10 ms, flip angle " 20°). The imaging data
were preprocessed using the Brain Voyager 3D analysis
tools. Functional data underwent 3D motion correction, 3D
spatial Gaussian smoothing (full-width at half-maximum 6
mm), temporal Gaussian smoothing (FWHM 2.8 s), linear
trend removal, and slice scan-time correction.

RESULTS

Confidence judgments recorded during the six masking
runs were analyzed using a 3 ! 2 two-way ANOVA with
stimulus contrast and preexposure as factors. As the depen-
dent measure, we calculated percentage recognition as the
number of objects rated “identified” relative to the com-
bined number of objects rated “identified” or “unidentified”
(Table I). The analysis revealed a significant main effect of
stimulus contrast (F(2,7) " 14.3, P # 0.005). The lowest con-
trast images were recognized worst (13%) and the highest

contrast images were recognized best (78%). A planned com-
parison between primed and nonprimed objects collapsed
across contrast found a small, but reliable, priming effect (t(8)

" 2.25, P # 0.05). Primed objects were rated identified 48%
of the time, whereas nonprimed objects were rated identi-
fied 43% of the time. Another dependent measure was cal-
culated by averaging the confidence ratings (1–4) for each
object and showed the same pattern of results. Response
times did not show a priming effect, but identified judg-
ments were made more quickly than unidentified judgments
(t(8) " 2.73, P # 0.05, paired). The lack of a priming effect in
response times was expected, due to the nonspeeded nature
of the task. The confidence judgment task was not designed
to infer neural processing time of primed and nonprimed

Figure 5.
Backward masking results. Stimuli
used in the event-related runs,
shown in A, were images of familiar
objects presented at three levels of
contrast and embedded in Gaussian
noise. Half of the images were pre-
exposed during the localizer runs
(primed). Stimulus presentation (83
ms) was preceded by a warning fix-
ation cross (800 ms) and followed
by the mask stimulus (117 ms), then
followed by 8 s of rest. Activation
time courses are shown in B for
identified (top) and unidentified or
effectively masked (bottom) objects.
Black lines: nonprimed; gray lines:
primed. Error bars are square root
of MSE/n. Accumulation predictions
for the upper and lower graphs can
be found in Figures 2 and 3, respec-
tively.

TABLE I. Percent identified as a function of
preexposure and contrast

Contrast Mean

0.08 0.18 0.40
Nonprimed 12% 41% 74% 43%
Primed 14% 49% 80% 48%
Mean 13% 45% 77%
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objects, but instead was designed to categorize trials based
on whether or not objects were identified. Furthermore, it
has been suggested that increased time-on-task may reflect
increased neural effort and is correlated with increased
BOLD signal [Buckner et al., 1998b]; therefore, using the
nonspeeded confidence judgment task decreased the likeli-
hood that time-on-task was influencing BOLD signal
changes.

The lateral occipital complex (LOC) activates more
strongly when viewing intact images or line drawings of
objects than when viewing other visual stimuli [Malach et
al., 1995]; therefore, area LOC is a relatively high-level visual
processing center selective for objects. Although many brain
regions show evidence of repetition suppression [Buckner et
al., 1998a; James et al., 2000], we chose to focus on area LOC
because it shows the most consistent and substantial repe-
tition effects [Schacter and Buckner, 1998; Wiggs and Martin,
1998]. The location of the group LOC was found by collaps-
ing data from nine participants and comparing the intact
and scrambled object conditions in the three LOC localizer
runs using the Brainvoyager GLM analysis tool. Figure 4
shows the location and extent of this region. Time courses
were extracted from the left and right group LOC for each
participant and were collapsed across trials for primed and
nonprimed preexposure conditions and confidence judg-
ments of “identified” and “unidentified” using the Brain-
voyager event-related analysis tool. Raw BOLD responses
were converted to percent signal change using the activation
at stimulus onset as a baseline. The unidentified confidence
condition was analyzed because it was the critical condition
for dissociating the two models. The identified confidence
condition was analyzed because it was considered a good
control condition; it was the most similar to conditions used
in previous priming studies. Because participants were
given four choices for confidence ratings, the likelihood that
the unidentified or identified confidence conditions were
contaminated with guesses was low. Combining hemi-
sphere, preexposure and confidence as factors produced a 2
! 2 ! 2 factorial design. Although the intermediate confi-
dence judgments were not included in the following analy-
sis, we did confirm that the magnitude of the BOLD re-
sponse for the two intermediate judgments fell between the
identified and unidentified conditions, as found in previous
research [Bar et al., 2001].

With peak BOLD response as the dependent variable, the
three-way ANOVA revealed a two-way interaction between
confidence and preexposure (F(1,8) " 13.8, P # 0.01) and a
main effect of confidence (F(1,8) " 7.74, P # 0.05), but no
other significant effects. The same ANOVA performed on
the mean BOLD response calculated between 2 and 6 s
poststimulus onset produced the same result. Likewise, sim-
ilar results were obtained when data were taken from a
cluster 8 times smaller than that shown in Figure 4. This
cluster of voxels was completely subsumed by the LOC
region shown in Figure 4 and was defined with a t-value of
14. The lack of any interaction with, or main effect of, hemi-

sphere implies that activation in area LOC was not lateral-
ized; therefore, all further tests were performed on data
collapsed across hemisphere. The main effect of confidence
(recognized/unrecognized) on HR was not interpreted, be-
ing superseded by the more interesting confidence by pre-
exposure interaction.

Figure 5B illustrates the interaction between confidence
and preexposure. The Accumulation and Suppression mod-
els both predicted that BOLD response for the identified
confidence condition would be greater for the nonprimed
than primed objects (Figs. 1, 2). A one-tailed planned com-
parison on these means showed that the nonprimed BOLD
response was greater than the primed BOLD response (t(8)

" 2.28, P # 0.05). For the unidentified confidence condition,
the Accumulation and Suppression models made opposite
predictions (Fig. 3). A two-tailed planned comparison on
these means showed that the primed BOLD response was
greater than the nonprimed BOLD response (t(8) " 5.23, P
# 0.001). This result is consistent with the Accumulation
model, but is inconsistent with the Suppression model.

Of course, the Accumulation example shown in Figure 3,
which matches the data shown in the lower graph in Figure
5B, could be generated with an atypical set of parameters.
Similarly, there may be a set of parameters for the Suppres-
sion model that would produce the right pattern of activa-
tion. To rule out this possibility, we simulated activity using
many combinations of parameters. In our simple simulation,
activity was zero at stimulus onset and accumulated linearly
with a particular slope until a predetermined peak activity
was reached. It then decayed linearly back to zero with a
particular slope. Our dependent measure was the difference
in cumulative activity between a nonprimed and a primed
stimulation. For the Accumulation model, primed simula-
tions were the same as their nonprimed partner, except that
the accumulation slope for the primed simulation was al-
ways greater. For the Suppression model, primed simula-
tions were the same as their nonprimed partner, except that
the accumulation slope for the primed simulation was al-
ways smaller, reflecting the smaller peak magnitude. The
difference between nonprimed and primed slopes was
treated as parameters, as was the timing of mask onset
relative to stimulus onset. Using five accumulation slope
values, three primed/nonprimed accumulation slope differ-
ence values, 13 peak activity values, three mask onset times,
and 91 decay slope values produced 53,235 combinations of
parameters for each model. For the Suppression model, no
simulations produced greater cumulative activity for the
primed condition than nonprimed condition, suggesting
that the example in Figure 3 is representative of the Sup-
pression model. For the Accumulation model, 53,211
(99.96%) of the simulations produced greater cumulative
activity for the primed condition than nonprimed condition,
suggesting that the example in Figure 3 is representative of
the Accumulation model. Figures 3 and 5B illustrate the
expected pattern of results based on an Accumulation model
account of priming and repetition suppression.
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DISCUSSION

To our knowledge, this experiment is the first empirical
test comparing the Accumulation and Suppression models.
The results are consistent with the Accumulation model,
which predicted greater activation for effectively masked
primed objects, and are inconsistent with the Suppression
model [Wiggs and Martin, 1998], which predicted lesser
activation for primed objects. The results add to the list of
insufficiencies attributed to the Suppression model [Henson,
2003] and find support for the alternative Accumulation
model. The Accumulation model not only accounts for our
results, but also accounts for results from previous fMRI and
PET studies [for review, see Cabeza and Nyberg, 2000;
Schacter and Buckner, 1998], MEG studies [Dale et al., 2000;
Noguchi et al., 2004], neurophysiological studies [Bichot and
Schall, 1999, 2002], and a neural network model [Becker et
al., 1997]. The Accumulation model may even account for
the atypical repetition enhancement results that are found
occasionally in fMRI studies [Henson et al., 2000; James et
al., 2002b; Schacter et al., 1995]. The Accumulation model
would predict that enhanced activation was the result of
poorer performance with primed objects compared with non-
primed. This hypothesis is difficult to test post hoc because
the relevant experiments all used indirect tasks, which
makes it difficult to extract a reliable behavioral estimate of
processing time from the data. This does not imply, how-
ever, that the hypothesis cannot be tested using neuroimag-
ing techniques, only that it has not been tested to date.
Should such an experiment not result in poorer performance
correlated with increased BOLD response, there are other
plausible accounts of these atypical effects [Henson, 2003]
that remain compatible with the Accumulation model.

When the Suppression model was first formalized it was
the prevailing theory linking neural and behavioral repeti-
tion effects. The Suppression model [Desimone, 1996; Wiggs
and Martin, 1998] posited a relationship between priming
effects, repetition suppression in fMRI [Schacter and Buck-
ner, 1998], and response (or repetition) suppression in sin-
gle-unit recordings [Li et al., 1993; Miller et al., 1991]. At that
time there was overwhelming evidence from neurophysiol-
ogy that repeating stimuli caused a decrease in activity of
neurons [Brown and Xiang, 1998; Desimone, 1996]. Since the
establishment of the Suppression model, new evidence sug-
gests that response suppression is not universal [Bichot and
Schall, 1999, 2002]. These later studies found evidence for
enhanced accumulation as a result of stimulus repetition.
Our data relate only BOLD repetition suppression with
priming effects. They do not speak directly to the role of
single-unit responses. What, then, is the relationship be-
tween single-unit response suppression and Accumulation?

In our experiment, BOLD responses were measured while
participants silently named objects. This task was chosen
because naming is used extensively in the study of human
priming effects, both behavioral and neuroimaging. Naming
is an implicit task for which the response does not depend
on the preexposure condition [Roediger and McDermot,
1993; Schacter et al., 1993]. In experiments that find response

suppression, delayed match-to-sample and serial recogni-
tion tasks are used because these are tasks that monkeys can
perform. For serial recognition the monkey differentiates the
preexposed (primed) and new stimuli with two separate
responses. This task differs markedly from a naming task,
requiring explicit recognition of preexposed stimuli and dif-
ferent responses based on preexposure. In delayed match-
to-sample, stimuli either match (targets) or do not match
(distractors) the sample. Responding to targets is similar to
the explicit recognition task just described because the stim-
ulus must be recognized as matching the previously seen
sample stimulus. No explicit recognition is required for
distractor stimuli, but monkeys are trained to withhold a
response to repetitions of the distractors, which makes this
task quite dissimilar from the naming task. Thus, response
suppression acts during explicit recognition and during sup-
pression of active response, but there is no evidence that it
operates during an implicit naming task such as the one
used here.

Another speculation about the relationship between sin-
gle-unit response suppression and accumulation involves a
neural network model of priming [Becker et al., 1997]. Beck-
er’s model is a recurrent neural network in which measure-
ments are taken of the time taken for the network to settle on
a particular object representation. Presenting a stimulus
changes the connection strength between highly coactive
nodes in the network, which is suggestive of “strengthen-
ing” or tuning the representation. The network requires less
time to settle on a representation when a repeated (or
primed) stimulus is presented. Measures of “single-unit ac-
tivity” or even “network activity” are not typically analyzed
for these models; however, others have speculated that a
decrease in settling time in such a network may decrease the
time over which the nodes in the representation are maxi-
mally activated [Henson, 2003]. Thus, the pattern of activa-
tion across the population of nodes could change with rep-
etition in a manner similar to the Accumulation model, but
it would not be necessary that every node in the network
display the same change. It is quite possible that a popula-
tion of nodes could display Accumulation changes, but that
within that population individual nodes could show sup-
pression, enhancement, or another pattern of change.

As stated above, the Suppression model was, for many
years, the prevailing explanation for repetition reduction
findings in neuroimaging experiments. A more recent ac-
count of the priming-related reduction in hemodynamic
response, however, is Response Association [Dobbins et al.,
2004; Logan, 1990]. The Response Association model makes
the strong claim that changes in neural object representa-
tions are not responsible for repetition reduction. Instead,
the model suggests that a response is associated with a
particular object on the initial presentation and, conse-
quently, input bypasses cortical object representations on
subsequent presentations and directly activates the neural
structures responsible for generating the associated re-
sponses. The model accounts for repetition reduction in
neuroimaging because bypassing the object representations
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reduces activation in object-selective brain regions. It also
accounts for the response facilitation seen in behavior per-
formance because directly accessing an associated response
facilitates responding. Like the Suppression model, how-
ever, the Response Association model cannot explain the
findings of the present study. Specifically, we found prim-
ing-induced changes for both identified and unidentified
objects, but the Response Association model only predicts a
reduction for identified objects; it does not predict an en-
hancement for unidentified objects. Our results do not rule
out the action of response associations, yet they show clearly
that priming-induced changes in BOLD response do reflect
changes in object representations. Whether these changes
are further modified by the action of response associations
remains to be studied.

Our data show that the Suppression model alone cannot
account for repetition suppression in fMRI, while the Accu-
mulation model could account for the findings. Crucially,
our results are consistent with the MEG results of Noguchi
et al. [2004] in ruling out that Suppression alone can explain
repetition suppression and in suggesting that an Accumu-
lation model is an important factor in accounting for the
changes that occur with object repetition. While a Suppres-
sion model does not appear necessary to account for our
results, it may be that other fMRI findings, as suggested by
Noguchi et al., can only be explained by integrating both
models.
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